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In what follows the stability of the periodic solution z = so(t) with 

period I of the system of differential equations 

((1.1) 

is investigated in ordinary (nonsingular) cases (z is an n-dimensional 

vector column). 

In the well-known studies by Liapunov and Poincare and in numerous 

subsequent investigations it is assumed that the right-hand sides of 

(0.1) are continuous and can be represented in the form of sums of linear 

terms and nonlinear remainders. Here we consider a more general “discon- 

tinuity” type, when the surfaces of discontinuity 

are given, and the right-hand sides f(z, t) of equations (0.1) can have 

discontinuities on these surfaces. The restrictions put on the functions 

f(z. t) and Fa(z, t) are the same as in the papers [ 1.2 1. 

This paper shows that Liapunov’s theorem on the linear approximation, 

and the Andronov and Vitt theorem on the possibility of not taking the 

unit root of the characteristic equation into account when investigating 

the autonomous case, can be generalized to the systems of more general 

type considered here. Liapunov’s direct method is replaced by the method 

of point transformations, and instead of representing the function f(z, t) 
as a sum of linear terms and a nonlinear remainder, the variational equa- 

tions are used. 

In the classical continuous case the linear approximation and the 

variational equations coincide. In the “discontinuous” case under con- 

sideration, the evaluation of variations, including the discontinuities, 

leads to linear relations, differential or algebraic, which in the 
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discontinuous case act as a linear approximation. The corresponding 

theorem, analogous to Liapunov’ s. was proved by his direct method [ 2 I. 

It is not immediately clear, however, how a theorem analogous to that of 
Andronov and Vitt can be proved by the same method for the discontinuous 

case. On the other hand, the use of the method of point transformations 

has enabled us to avoid this difficulty and made it possible for us to 
expound the whole theory of stability of periodic processes of discon- 

tinuous systems both for the autonomous and the nonautonomous cases. 

The idea of the possibility of exploiting the method of point trans- 

formations for our purpose arose after we had seen the manuscript of the 

study by Neimark, which has since been published [ 3 I. This paper con- 

tains a comprehensive study of the problems of stability by the method 

of point transformations, but it does not contain the equations for the 

linear approximation of the system (0.1) in the discontinuous case (see 

below, equations (3.1) + (3.4). As a result, for the discontinuous case 

paper [3 I does not contain the proofs of Liapunov’s theorem or that of 

Andronov and Vitt in the form in which these theorems are formulated and 

proved for the continuous case. 

1. Connection with a point transformation. 'Ihe periodic 

solution z’(t) determines a closed curve, called a cycle, in the z-space, 

For the origin 0 of the coordinates take the initial point z’(O) on this 

cycle, i.e. put z’(O) = 0. ‘Then also to(r) = 0. Let y = ~(0) be the 

initial deviation*, and z = +(t, y) the corresponding solution of the 

system (0.1). ‘Ihen the integral curves z = #t, y ) determine the point 

transformation 

Y * = g(Y) MY) = (P(T I Y) ) (1.1) 

for which the deviation y is the transfon of the initial deviation y*, 

corresponding to the instant t = r . 

The point y = 0 is a fixed point of transformation (1.11, which trans- 

forms a certain neighborhood of this point into a neighborhood of the 

same point again. Together with transfonnation (1.11, we shall consider 

the iterated transformations yI* = g,(y), where g,(y) = gl g,,l(y)l (m = 

1, 2, . . .; go(y) = y). 

Let us introduce certain definitions. The fixed point y = 0 of the 

transformation y* = g(y) is said to be stable if for arbitrary t > 0 the 

l Let us take the initial instant of the time t = 0 different from the 
instants ta at which the integral curve I = z’(t) intersects the dis- 

continuity surfaces F=(L, t) = 0 (a = 1, 2, . . . ). 
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inequality* (g,(y) 1 < c holds for all m = 0, 1, 2, . ..) provided 1 y 1 < 
6 = S(c 1. If, in addition, lim g,(y) = 0 as m + 00, provided ( y 1 < 8, 
(where 6, denotes a certain fixed ntier), then the fixed point y = 0 
of the transformation y* = g(y) is said to be asymptotically stable.** 

Let us note that from the inequalities 

iu!t, Y> - y!t, 0) / < 8 (1 z .u, iyl < B(E) ) 

expressing the stability of the periodic solution z’(t) = q5(t, 01, pro- 
vided we restrict ourselves to discrete instants t = ~7, there at once 
follows the stability of the fixed point y = 0. Also conversely, from 
the stability of the fixed point there follows the stability of the 
periodic solution of the system (0.1). ‘Ihis can easily be seen from the 
identi tyX 

y(t,y) = ci(f&n(Y)) (g,,,(y) = qJ(““,y), t’ = t -m) (l-2) 

in which I is a nonnegative integer. If m is determined from the inequal- 
ities mr < t < (m + 1) r , then t’ varies in the finite interval 0 < t’ < r , 
and the stability follows at once from the theorem on the continuous 
dependence of solutions on the initial conditions throughout a finite 
time interval. ?he situation is the same in the case of asymptotic 
stability. ‘Thus, according to Liapunov, the periodic solution z’(t) of 
the system of differential equations (0.1) is stable (asymptotically 
stable) only when the fixed point y = 0 of the point transformation y* = 
+(r, y) is stable (asymptotically stable). 

l For an n-dimensional vector y(yl, . . . , y,) its modulus 1 y I is defined 
as the “Euclidean length” 

,YI =I/lY112+ . ..+lv.T 

l * The limit transition II + 0~ is fulfilled uniformly with respect tc 
y(I yI < 6,). This follows from the stability of the fixed point y = 0. 

x The identity (1.2) follows from the periodicity of the right-hand 

sides of the system (0.1) with respect to t (with the period r ). 
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2. Linearization of a point transformatioo. The point trans- 

formation y* = g(y), where g(y) = Q, (r, y), is differentiable* for y = 0, 

i.e. the Jacobian matrix J = (J g/J y lu= o exists and 

g(Y) = JY -!- o(M) ( 0 (!Yl) 
---cOfory-+O 
IYI, ) 

(2.1) 

Lt p = min IX(J) 1 and v = max IX(J) 1 be the smallest and the largest 

of the moduli of the characteristic numbers of the matrix** J. The follow- 

ing then holds: 

1. If in a certain neighborhood of the fixed point y = 0 all the g,(y) 

existx, then in a sufficiently small neighborhood of this point the 

inequalities 

Kt,P - EY k/l < l67&)l< 4V + E)“‘iY/ (m = 1, 2,...) (2.2) 

are fulfilled, and for two given points y’ f 0 and y”.# 0 we have 

~g&‘)/ < K,(P + ~)“‘jg’lt Jg,(y”)i > &(v - ~)~ly”J (m = 1, 2,.*.) (2.3) 

where c is an arbitrarily small positive number and K, L, K,, L, are 

positive constants which do not depend on m. 

l In fact, in the (L, t)- space a small region Q in the plane t = 0, 

containing the point y = 0 in its interior, is transformed by means of 

the integral curves into a region Q’ in the plane t = r. Between the 

planes t = 0 and t = r the integral curves intersect the surfaces of 

discontinuity F,(z, t) = 0 (a = 1, . . . , s), mapping the region Q into 

regions Q,(a = 1, ., . , s), lying on these surfaces. In this way the 

transformation Q + Q’ decomposes into transformations Q + Q,, Q, -t Q,, 

. ..I Q* 4 Q*. Each of these transformations is differentiable at the 

point lying on the curve z’(t). Therefore the transformation Q+ 0’. 

i.e. y* = g(y) is also differentiable at y = 0. Here an essential use 

is made of the property of smoothness of the discontinuity surface 

F&. t) = 0 at the point of intersection Ma of the integral curve 

z = z’(t) with the surface of discontinuity Fa( Z, t) = 0 (a = 1, 2,. . . ). 

l * The transformation y* = 4 (T, y) is reversible; therefore the Jacobian 

( JI f 0, and consequently p > 0. 

x This condition is always satisfied if the fixed point is stable, i.e. 

for all successive iterations, all the g,(y) lie in the region of 

definition of the function g(y). 
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2. If v < 1, then in a certain neighborhood of the fixed point y = 0 

all the g,(y) are significant, and therefore the inequalities (2.2) and 

(2.3) are fulfilled. 

For the proof of properties 1 and 2 we will make use of the following 

lemma. 

Lcraa. If A is an n x n matrix and 

1 h&4)\ < k (i = I,..., n) ( or I h&A)l>k (i=l,...,n) 
1 

then there exists a similar matrix B = TIAT, the “norm” 

fies the inequality 

of which satis- 

If A is a real matrix, then the matrix B may also be selected as a 

real matrix. 

In fact, let B = rlAT be a triangular matrix with characteristic 

numbers Ai along the main diagonal and with small non-diagonal elements 

Y ij, i.e. all Iyij ( < 9, where q is arbitrarily small. Then for an arbit- 

rary column z we have 

Hence 
lBzl< ImAhil + (n - I)?1 I4 < (k - ?I i4 

Pll < k 

If B is a complex triangular matrix, then it can be replaced by a 

similar real matrix U-lBU. since the basis in the space to which the 

matrix B refers can be selected in such a way that besides the complex 

vector c = (1/\/2)(p + in). the complex conjugate vector c’ = (l/ dw 

G) is also present. Then the transition from the complex base e,c’ to 

the real base p, q, . . . is realized by means of a unitary matrix u. Here 

I\ CJ-‘BU(l = 11 Bll < k.Th e case when all [Xi I > k is analogously invest- 

igated. Hence the Lemma is proved. 

Let all the g,(y) be significant. In accordance with the Lemma (for 

k = v + c) select B = T-lJT and make the transformation of variables 

Y = Tz. Then 

9 = l(z), f(z) = Bz +o (14) 

and, consequently, whenever 11 Bll < k, we have for small ( z 1 

&)I < kltl n If,,,Wl G km I4 (m = 1, &...I 

But g(Y) = TfCT-' y) and, in general, g,(y) = Tfm(TLb). 
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Therefore 

Ig,(y)I =Zll~ll IV111 k”‘lyl 

i.e. the right-hand inequalities of (2.2) hold for L = 11 7’11 (1 T-l I/ and 

k=v+c. In particular, if v < 1, then for small 6 > 0 also k = v + c< 1. 

Then from 1 f(z) 1 < k( z ( it follows that all the f,(z), and hence all the 

g.(y) are significant in a small neighborhood of the fixed point. 

Now, for v > 0, let 

A = FBT, B = t,” ;) 
where all the moduli of the characteristic numbers of the matrix C are 

equal to v but those of the matrix D are less than v. In accordance with 

the Lemma it can be assumed that 11 Cl [- > v - c and 11 D I( < v - 3 6 for a 

small c > 0. Then, after the transformation of the variables y = Tz. we 

have I* = f ( z ) , where 

h(z) = cu + o(IzI), 
Introduce the notations 

fz@) = Dv + 44) 

(2) = 14 - I4 {f(z)} = V&)1 - Ih( 

Then whenever 1 z ( > ( u I > 1 z 1 , we have 

U(z)) - (v - 24 (2) z llC4 - (v - ~1 lull - PI - (v - 3 I41 

Hence on the basis of the inequalities IID II- > v - 6. IID II < 
v - 3c it follows that in a small neighborhood of the fixed point z = 0 

the right-hand side of the last inequality is nonnegative. Therefore 

ll(z)l a w 1 a (v - 24 bl 
and, in general 

If&)1 > U,(x)) > (v - 2sY 0) (m = 1, 2,...) 

NOW let Z”C a” f 0, Y”= 0. Then 1) Z” II =! Z” 1 > 0 and 

I/, (z’)l > (v - 2qm 12”1, If,(z’)l = IT-1 g,W) I < IV1 k,(Y’)l, IY’I G ml Id 

Putting L1 = ( II T 11 (( T-l I\ )-I and replacing 2 c by c, we obtain the 
right-hand inequality of (2.3). The left-hand inequalities (2.2) and 

(2.3) are obtained at once, if the right-hand inequalities (2.2) and 

(2.3) are applied to the inverse transformation 

y = 1-l y* + O(lY’I) 

The validity of inequalities (2.21 and (2.3) is thus proved. The in- 

equality (2.2) will be used later, in Section 5. Let us note here that 
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from the inequalities (2.2) and (2.3) there at once follows the known 

criterion of stability for the fixed point*: the fixed point y = 0 of the 

point transformation y* = g(y) is asymptotically stable if v < 1, and 
unstable if u > 1. 

3. Variational equations. Let z (t, p) be an arbitrary one-parameter 
family of solutions of the system (0.11, reducing to z’(t) for p = 0. Let 
the function z(t, p) be differentiable for p = 0 and t >/ 0. Tknote by n 
the first variation** of the solution z’(t) of the system (0.1): 

If we replace z by z(t, p) in (0.1) and next differentiate texm-by- 
term with respect to p and put p = 0, then we obtain a linear system of 
differential equations with periodic coefficients 

dx 
x= 2=20(f) 5 (3.1) 

which is satisfied by the variation x(t) in each of the intervals 

t,4\<t,<ta (a = I,...; to = 0) 

Inasmuch as the integral curve z’(t) at the instants t, has breaks, 
the variation x(t) for t = t, has discontinuities. Let us calculate the 
magnitudes of these discontinuities. By t(p) denote the instant corres- 
ponding to the intersection of the curve z(t, p) with the surface 
F,(z, t) = 0, so that t(O) = t,. ‘Iken the point z [ t (p 1, p 1 for arbit- 
rary p is situated on the surface F, = 0. ‘Ike differential of this func- 
tion z 1 t(p), pl evaluated at p = 0, and calculated for the approach from 
the region H, or from the region Ha_1, is equal toX 

6z = f+&(p) + x+ci = f-c&(P) + 2-a 

. 

.I 

X 

Another proof of the criterion by means of the Liapunov functions is 

contained in paper [ 3 1 , 

In what follows it will be convenient to understand by the variation 

6r the derivative (d~/dc()~=,, i.e. to assume 8~ = 1. 

Here f+,, z+= (and correspondingly f>, I;) denote the value of the 

function f ( Z, t) at the point of the integral curve z’(t) and the 
value of the variation X(C) for t = tQ + 0 (correspondingly for 

f= t - 0). The regions ffa _1 

tinuity 

and Ha adjoin the surface of discon- 

in a neighborhood of the point Ma. In each of these regions 
the function f(r, t) is continuous. 
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Hence 
+ xa-xa= - W (p) (Ea = f’(l - I-&) (3.2) 

(h the other hand, 

identity Fat z[ t (p 1, 
differentiating ten-by- term 

~1, t(p)1 = 0, weobtain 

cd+)* Q(p) + ($$,x: = 0 

(for p = 0) the 

(3.3) 

where (d F,/ dt ) + denotes the total derivative of F, [ z” (t 1, t 1 for 

t = t, + 0, and (d F/d z 1 denotes the colurm composed of (d F,/d z i ) 
(i = 1, . . . . n). Hence determining at(p) and substituting into (3.21, we 

finally obtain* 

x+c+o = s,x- (1 (a = 1, 2,...) (3.4) 

where the constant ta x n matrices S, are determined by the equalities 

S, = E + ~,h, = (E - ioh+J1, 
car, I w m, 

h’ = (dF= / dl) f (a = 1, 2,...) (3.5) 

Here E denotes the unit matrix. 

The linear system (3.1) + (3.4) will be called the variational equa- 

tions for the solution z’(t) of the system (1.1). When f(z, t) is a 

continuous function, the discontinuity conditions (3.4) are absent and 

there remain only the usual variational equations, which hold for all 

t ) 0. 

4. Extension of Liapunov's theorem on stability of periodic 
solutions to the l discontinuousm case. Consider an n x n matrix 

X(t), the CO~WUW of which are the solutions of the equations of varia- 

tions (3.1) + (3.4). The determinant IX(t) 1 satisfies the formula (a 

generalization of the Jacobian formula for the acontinuousW case) 

Ix(t)/ = j_Y(O)] IS,/.. .;s,_,I cxp j SpP(t)dt 

0 ( 
t ,+_lGtGt, 

a=1,2,...;t, =0 J (4.1) 

Here PO = (df/d z ) 
linear system of differ%:: i 

is the matrix of the coefficients of the 

‘e/quations (3.1)**. 

The conditions of discontinuity (3.4) and (3.5) were obtained 

differently in papers [ 1,2 I. 

Formula (4.1) is obtained if the usual Jacobian formula is applied 

to every interval 1 t,_l, tQ 1 and the relations (3.4) are taken into 

account. 
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the 

Since, according to (3.51, each matrix Sa is nonsingular, i.e. ( Sa ( f 0, 
matrix 1 Ht ) 1 is different from zero for all t > 0, provided it is 

different from zero for t = 0. In such a case the matrix X(t 1 is a funda- 

mental matrix, i.e. its colunms are made up of n linearly independent 

solutions of the system (3.1) + (3.4). Any other fundamental matrix can 

be represented in the form X(t )C, where C is an arbitrary nonsingular 

constant n x n matrix. Because of the periodicity of the system (3.1) + 

(3.41, not only the matrix X(t) but also the matrix X(t + 7) is a funda- 

mental matrix. lherefore 

X(t -t_ T) = X(+7 (4.2) 

where U is a nonsingular constant matrix. ‘lhe matrix II is determined by 

the system (3.1) + (3.4) to within a transformation*. 

As in the .continuous* case, the equation ( II - X El = 0 is called the 

characteristic eyuation of the system (0.1). We will prove that one of 

the matrices II is the Jacobian matrix J = ( r,b ( t , y)/d~)~ = o. In fact, the 

colurms of the matrix X( t ) = (d 4 (t, y j/r3 y ) _ 0 are the variations**, 

which, as has been shown, satisfy the system (3.1) + (3.4). Moreover, 

X(O) = (d$(O, y)/dy lyzO = d y/d y = E. Consequently, (X(O) 1 = 1 and 

X(t) is a fundamental matrix. Substituting t = 0 in the identity (4.2) 

and making use of X(O) = E; we obtain 

Ihe characteristic numbers of the matrix J thus coincide with the 

roots of the characteristic equation of the system (0.1). ‘lherefore, the 

criteria on stability of a fixed point mentioned in Section 2 can 

imnediately be applied to the variational equations (3.1) + (3.4). 
lhis at once leads to the following theorem, analogous to Liapunov’s 

theorem on the stability of the periodic motion in the continuous case. 

Theorem I. If v is the maxim modulus of the roots of the character- 

istic equation I II - X E I = 0, then the periodic solution z’(t) of the 

system (0.1) is asymptotically stable for Y < 1 and unstable for Y > 1. 

5. Autonomous systems. If system (0.1) is autonomous, i.e. 

f(z, t) does not depend explicitly on t, so that (d f/d t ) = 0, and the 

. 

l * 

If instead of X(t) the matrix X(t)C is taken for a fundamental matrix, 

then the matrix II is to be replaced by C-l UC. 

In the k-th column of the matrix (d+(t, y)/d y)y=o appear the ele- 

ments (d+(t, y)/dyk)y=o, evaluated for the zero values of all Yj. 
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equations of the discontinuity surfaces F, = 0b.x = 1, 2, . . .) also do not 

explicitly contain the time t, then the system (0.1) admits a family of 
periodic solutions z”(t + p), and therefore the vector velocity 

zo (t) = a~ 
( 
&0 (t + CL) ) 

IL=0 

satisfies the variational equations (3.1) + (3.4). Inasmuch as the varia- 

tional equations possess a periodic solution z’(t), theni as in the 

“continuous” case, the characteristic equation 1 U - X E \ = 0 has a unit 
root. Therefore, the criterion for asymptotic stability is not applicable 

to the autonomous case. We will show that the theorem of Andronov and 

Vitt I4 3 , established for the “continuous” case, can also be extended to 

the mdiscontinuousn case, provided that by the variational equations we 

understand the combined system (3.1) + (3.4). 

Consider an n-dimensional z-space. Without loss of generality in our 

deductions, assume* that z’(O) = 0, z,‘(O) = 1, z,‘(O) = . . . = ~~~(0) = 0. 
Choosing the initial point y (with the coordinates y2, . . . , y,) in the 

hyperplane z1 = 0, denote by + ( t, y) the corresponding solution of the 

system (0.1). Construct the matrix** 

(5.1) 

‘Ihis matrix turns out to be a normalized fundamental matrix for the 

variational equations, since the columns of (5.1) satisfy the system 

(3.1) + (3.4) and X(O) = E. Therefore [ see (4.3) 1 

where V = (6’Q/c?y jy= o and @ is an (n - 1) dimensional vector column 

t=r 

with the coordinates &, . . . , $,,. 

Inasmuch as in the z-phase space the integral curve z’(t) intersects 

the hyperplane z1 = 0 at t h rnr (m = 1, 2, . . . 1, also a close integral 

curve z = qS(t, y) (for \y\ small) will also intersect this hyperplane 

. 

.* 

Assume that the velocity z’(O) is directed along the tl-axis, and by 

a proper selection of the scale make the modulus of the velocity equal 

to one. For the hyperplane z1 = 0 we can take any arbitrary hyperplane 

which intersects the cycle z 0 (t ) at 0. 

On the right-hand side of (5.1) are indicated the columns which 

constitute the matrix. 
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for the values t = t,(y), where t,(y) are the roots of the equation 

qqt, y) = O(m = 1, 2, . ..) t”(o) = nlf ). 

Consider the point transformation 

Y’ = k (Y) (k (Y’, = ‘9 Vl WV Y)) (5.3) 

realized by the integral curves and transforming a neighborhood of 0 in 

the hyperplane z1 = 0 into another such neighborhood. The curve z’(t) = 
$J (t, 0) determines the fixed point y = 0 of this transformation. The 

transformation (5.3) (to distinguish it from the transformation (1.1) ) 

will be called the truncated point transformation. 

Let us compute the Jacobian matrix of the truncated point transfoxm- 

ation: 

Since V= (d@(r,y)/~?y)~=~, and the ntruncatedW initial velocity 

(d@(t, 0,/a t It= 0’ according to assumption, is zero, then J’ = V. 

Thus, owing to the criterion of stability of the fixed point and (5.21, 

the following-proposition holds. 

If, besides the unit root, the moduli of the remaining R 

the characteristic equation 1 II - A E 1 = 0 are all less than 

the fixed point of the truncated point transformation (5.3) 

ally stable. 

‘Ihe following theorem holds*. 

- 1 roots of 

unity, then 

is asymptotic- 

Theorem 2. If, besides the unit root, the tiduli of all the remaining 

n- 1 roots of the characteristic equation are less than one, then the 

periodic solution z’(t) of the system is stable according to Liapunov. 

Moreover, it is nasymptotically stable to within the phase”, i.e. for 

every solution z(t) of the system (0.1) which is close to z’(t)(lz(O) - 

zO(O) 1 < a,, where 6, is a given number), there exists an a which depends 

continuously on z(O) such that 

lim[z(t+a)-Z’(f)]=0 for ~-+co, lima=0 for 2 (0) --, i” (0) (5.41 

For the case when f (z, t) is a continuous function, this theorem was 

established in a somewhat modified form by Andronov and Vitt in 1933 
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Let us first prove the existence of a finite limit: 

lim [k (Y) - mrl = p (y) for m+ m 

For this let us note that 

(5.5) 

Gn (Y) - mT = i Ul [k,-, (y)l - T.) Pa(Y)=Y) 
Q-1 

(5.6) 

Oaring to the differentiability (for y = 0) of the function 

the inequalities (2.21, we have 

1 tl [k,-, (Y)] - = 14 i’kf t k,-, (Y) I\< A’ b’ + E)‘-’ 1 Y 1 

t,(y) and 

(5.7) 

where M > 0, N > 0 are constants, Y is the maxti modulus of the roots 

of the characteristic equation, different from unity, and c > 0. Assuming 

that in (5.7) Y + t s 1, we conclude from (5.6) and (5.7) that the 

difference t,(y) - IRK is the m-th partial sun of a uniformly convergent 

series, and therefore 

lim [tm (y) - md = B (Y) for m-+02 

where /3 ( t) is a continuous function which satisfies the inequality 

IB(Y)l~~lYl ( N 
r=l-v--E ) (5-8) 

From this there at once follows the asymptotic stability to within the 

phase of the solution z’(t) for initial deviations taken in the hyper- 

plane z1 = 0. 

In fact, let II < t < (a + 1) r . Since the systan (0.1) is autonomous, 

the choice of the initial instant is arbitrary. lherefore, displacing the 

time by t,, we have the identity 

Cp (t + B, Y) = 9 (2, ‘p (tm, Y)) z ‘P (tc ktn (Y)) (5.9) 

rheret=t+fl-t, 

lhe quantity t due to (5.5) varies in a finite interval. Iherefore, 

using the fact that the solutions of the system (0.1) depend continuously 

on the initial conditions throughout a finite interval, we have 

lim[cp(t, km(Y))-q(t, 0)] =O as m+oo (5.10) 

Ch the other hand, owing to the periodicity, 4 ( t, 0) = 4 ( t + IT, 01, 
and therefore 
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lim[cp(t, O)--((t, O)]=O as m4a2 (5.11) 

in so far as t + mr- t + 0 as n-r 00. 

Adding term-by term (5.10) and (5.111, and using (5.91, we obtain 

lim h 0 + fb 9) - ‘p 0, @I = 0 as t4co (5.12) 

lhis is so, since as t -b 00, so also I + 00. 

Now assune that the initial point z(O) does not lie in the hyperplsne 
71 = 0 and is determined by the equality z(O) = qS(p, y), where 1~ 1 < A, 
jyl< A(A> 0). For th ese inequalities (with a sufficiently small A) 

let the Jacobian be 

For p = 0, y = 0 this Jacobian is equal to IX(O) ( = 1 [see (5.1) I. 

Then all the points C# (p, y) for Ip I < 4, (y I < A cover a certain 

n-dimensional neighborhood of the point 0, and 4 (cc, y) + 0 only as p + 0 

and y + 0. If z(O) = +(p, y), then z(t) = c,6( t + p, y). 'lherefore, in 

(5.12) replacing$( t + /3, y) by z(t + p- p) and putting a = p- ~1, we 

obtain (5.4). 

Fran the reasoning outlined above it is evident that the transition 

to the limit in the equality (5.4) is realized uniformly with respect to 

all initial values z(O), satisfying the inequality lz(O) - z'(O) I < 6,. 
From here it easily follows that the solution z’(t) is stable in 

Liapunov's sense. 

Hence the theorem is proved. 
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